
Published: June 16, 2011

r 2011 American Chemical Society 385 dx.doi.org/10.1021/cr200040s | Chem. Rev. 2012, 112, 385–402

REVIEW

pubs.acs.org/CR

The Douglas�Kroll�Hess Approach
Takahito Nakajima*

Computational Molecular Science Research Team, Advanced Institute for Computational Science, RIKEN,
7-1-26 Minatojima-minami, Cyuo, Kobe, Hyogo 650-0047, Japan

Kimihiko Hirao

Director, Advanced Institute for Computational Science, RIKEN, 7-1-26 Minatojima-minami, Cyuo, Kobe,
Hyogo 650-0047, Japan

CONTENTS

1. Introduction 385
2. Theoretical Aspects 386

2.1. Douglas�Kroll Transformation 386
2.2. Higher-Order/Arbitrary-Order Douglas�Kroll

Hamiltonians 387

2.3. Related Two-Component Approaches 389
2.3.1. Breit�Pauli Approximation 389
2.3.2. Regular Approximation 389
2.3.3. Relativistic Scheme by Eliminating Small

Components 390

2.3.4. Direct Perturbation Theory 390
2.3.5. Normalized Elimination of the Small

Component 390

2.3.6. Infinite-Order Two-Component
Method 391

2.4. Electron�Electron Interaction in the DK
Hamiltonian 391

2.5. Spin�Orbit Effects 392
3. Practical Aspects 393

3.1. Implementation of the DK Hamiltonian 393
3.2. Energy Derivatives 394
3.3. Basis Sets 395
3.4. Model Potentials 395
3.5. Program Packages 396

4. Magnetic Properties with the DK Method 396
4.1. NMR Magnetic Shielding Constants 396
4.2. NMR Spin�Spin Couplings 397
4.3. Magnetizabilities 397
4.4. Zero-Field Splittings 398
4.5. EPR g-Tensors 398
4.6. Hyperfine Coupling Tensors 398
4.7. Magnetic Circular Dichroisms 399

5. Conclusions and Perspectives 399
Biographies 399
Acknowledgment 400
References 400

1. INTRODUCTION

It is common knowledge that relativistic effects are important
in the chemistry of heavy elements. As a result, polyatomic
systems that contain heavy elements are involved in a variety of
interesting chemical and physical phenomena. The consideration
of relativistic effects is essential for the theoretical description of
the molecular structures, chemical activities, and properties of
heavy-element systems.1 The continuing development of relati-
vistic molecular orbital (MO) theory is reaching rows of the
periodic table that are nearly impossible to treat with nonrelati-
vistic approaches. To theoretically treat the relativistic effect, the
Dirac equation is usually used instead of the nonrelativistic
Schr€odinger equation. The one-electron Dirac Hamiltonian with
an external potential is written as

HD ¼ cR 3 pþ βc2 þ V ð1Þ

where the constant c is the speed of light, V is the external
potential, and p (=�ir) is the momentum operator. Hereafter,
atomic units are used (e.g., c = 137.036). The 4 � 4 Dirac
matrices r and β in eq 1 are given by

Rt �
02 σ t

σ t 02

 !
, t ¼ ðx, y, zÞ, β � I2 02

02 �I2

 !
ð2Þ

where σt represents 2 � 2 Pauli spin matrices comprising

σx � 0 1
1 0

 !
, σy � 0 �i

i 0

 !
,

σz � 1 0
0 �1

 !
ð3Þ

Since the Dirac equation is only valid for a one-electron system,
the one-electron Dirac Hamiltonian has to be extended to a
many-electron Hamiltonian to treat the chemically interesting
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many-electron systems. A straightforward way to construct the
relativistic many-electron Hamiltonian is to augment the one-
electron Dirac operator, eq 1, with a Coulomb or Breit (or its
approximate Gaunt) operator or both as a two-electron term to
yield Dirac�Coulomb (DC) or Dirac�Coulomb�Breit (DCB)
Hamiltonians. Recently, the Hartree�Fock (HF) and the Kohn�
Sham (KS) methods, which use the DC(B) Hamiltonians, have
become familiar and powerful relativistic approaches as efficient
computational algorithms are developed.2�8

However, despite recent implementations of an efficient algo-
rithm for a four-component relativistic approach, the DC(B)
equation with four-component spinors composed of large (upper)
and small (lower) components still demands intensive computa-
tional efforts to solve and is difficult to apply to large-sized
molecules. Chemists’ attentions are devoted to the electronic
solution even though the four-component calculations provide
eigenstates for not only the electronic state but also the negative-
energy eigenstate. As an alternative to solving the four-compo-
nent relativistic equation, several two-component quasi-relativistic
approximations have been proposed and applied to chemically
interesting systems containing heavy elements. The motivation
of the two-component relativistic approximation is to obtain the
electronic state without explicitly treating the negative-energy
solution Since the relativistic effects that appear in the electronic
state are closely related to the negative-energy state in four-
component language, the primary problem of the two-compo-
nent relativistic approach is the effective retrieval of those effects
that are lost by neglecting the negative-energy solution. There-
fore, an approximate relativistic approach should include the
following features:
(1) It should be accurate enough to give a result close to

that of the one- and many-electron four-component
approaches.

(2) It should be efficient and effective when applied to poly-
atomic molecular systems containing heavy elements.

(3) It should be well balanced in that it is able to describe
molecular systems that contain a wide variety of atoms in
the periodic table with the same quality.

(4) It should be variationally stable in order to avoid varia-
tional collapse in the sense that at least the nonrelativistic
limit is correctly determined.

(5) It should be variational and nonperturbative in order to
evaluate various energy values and one-electron properties.

The Douglas�Kroll (DK) approach decouples the large and
small components of the Dirac spinors in the presence of an
external potential by repeating several unitary transformations.
The DK transformation is a variant of the Foldy�Wouthuysen
(FW) transformation9 and adopts the external potential, V, as an
expansion parameter instead of the speed of light, c, that is using
in the FW transformation. Several excellent comprehensive re-
views of the DK method have appeared so far.10�13 The DK
method satisfies almost all of the criteria mentioned above: it
avoids the high singularity in the FW transformation by adopting
the external potential as an expansion parameter resulting in the
DK Hamiltonian having variational stability. In contrast to the
Breit�Pauli (BP) Hamiltonian, the DK Hamiltonian can be
applied to variational calculations. Criterion 1 is also satisfied by
the higher-order DK method for one- and many-electron sys-
tems. In the present review, we will describe both the theoretical
and practical aspects of the DK approach.

2. THEORETICAL ASPECTS

2.1. Douglas�Kroll Transformation
The one-electronDirac equation including theDiracHamiltonian,

eq 1, is given by

HD
ΨL

ΨS

 !
¼ V þ c2 cσ 3 p

cσ 3 p V � c2

 !
ΨL

ΨS

 !
¼ E

ΨL

ΨS

 !
ð4Þ

where ΨL and ΨS are the large and small components, respec-
tively, and E is the energy of a particle. The two-component
relativistic approach can be obtained by block-diagonalization of
the Dirac Hamiltonian with a suitable unitary operator, U, that
removes the off-diagonal blocks as follows:

UHDU
† ¼ Hþ 0

0 H�

 !
ð5Þ

The eigenvalues of Hþ and H� form the positive- and negative-
energy branches of the full Dirac spectrum, respectively. Con-
sequently, the two-component equation can be solved as

HþΦ ¼ EΦ ð6Þ

which gives the eigenvalues for the electronic solution of the
original Dirac equation. Douglas and Kroll14 proposed a proce-
dure to decompose the overall transformation, U, into a
sequence of simpler unitary transformations,

U ¼ :::U3U2U1U0 ð7Þ

The first step in the DK transformation is a free-particle FW
transformation in momentum space because it is difficult to
obtain an analytical form of the unitary operator, U, except in
the free particle case. Using the free-particle eigensolutions of
the Dirac Hamiltonian associated with the positive-energy
eigenvalues, the unitary operator in the free-particle FW trans-
formation is given as

U0 ¼ A AR
�AR A

 !
ð8Þ

where A and R are kinematical operators defined by

A ¼ E0 þ c2

2E0

 !1=2

ð9Þ

R ¼ cσ 3 p
E0 þ c2

ð10Þ

with

E0 ¼ ðp2c2 þ c4Þ1=2 ð11Þ

If Ω is an eigenfunction of p2 with an eigenvalue of k2, then

E0jΩæ ¼ ðk2c2 þ c4Þ1=2jΩæ ¼ εðk2ÞjΩæ ð12Þ
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AjΩæ ¼ εðk2Þ þ c2

2εðk2Þ

" #1=2
jΩæ ð13Þ

and so forth. The application of the unitary operator, eq 8, to
the Dirac Hamiltonian in an external field, HD, gives

H1 ¼ U0HDU
†
0 ¼ E0 þ E1 þO1 ð14Þ

where

E0 ¼ E0 0
0 �E0

 !
ð15Þ

E1 ¼ E1 0
0 E1

 !
ð16Þ

O1 ¼ 0 O1

�O1 0

 !
ð17Þ

with

E1 ¼ AVAþ ARVRA ð18Þ

O1 ¼ ARVA� AVRA ð19Þ
The E0 and E1 blocks are even (i.e., only diagonal blocks)
and O1 is odd; only off-diagonal blocks are nonzero. The
resulting Hamiltonian yields the free-particle FW Hamiltonian,
which is also referred to as the no-pair Hamiltonian15�17 or the
first-order DK (DK1) Hamiltonian in the context of the DK
approximation. The resultant DK Hamiltonian still main-
tains four-component formalism. The reduction from four-
component formalism to the electronic two-component
formalism is carried out by keeping the upper diagonal block
of all operators. In order to correspond to the nonrelativistic
limit, the resulting two-component Hamiltonian is shifted by
�2c2. Therefore, the DK1 Hamiltonian in the two-compo-
nent form is given as

HDK1 ¼ E0 � c2 þ E1 ð20Þ
Douglas and Kroll suggested that it is possible to remove odd
terms of arbitrary orders in the external potential through
successive unitary transformations as follows:

Un ¼ ð1þWn
2Þ1=2 þWn ð21Þ

where

Wn ¼ �W†
n ¼ 0 Wn

�W†
n 0

 !
ð22Þ

Here,Wn is an anti-Hermitian operator of the nth order in V.
The DK transformation correct to second order in the
external potential has been extensively studied by Hess and
co-workers18,19 and has become one of the most familiar quasi-
relativistic approaches. The Douglas�Kroll�Hess (DKH) method

is another frequently used term for the DK method in honor of
the pioneering work of Hess. The second-order DK (DK2)
Hamiltonian in the two-component form is given as

HDK2 ¼ HDK1 � 1
2
½W1, ½W1, E0�þ�þ ð23Þ

where [a,b]þ denotes the anticommutator andW1 is determined
by

W1E0 þ E0W1 ¼ O1 ð24Þ

Equation 24 cannot be directly inverted to giveW1; however, the
matrix elements of W1 between two eigenfunctions, Ωi and Ωj,
of p2 with eigenvalues, ki

2 and kj
2, are

ÆΩijW1jΩjæ ¼
ÆΩijO1jΩjæ

εðki2Þ þ εðkj2Þ ð25Þ

since Ωi and Ωj are eigenfunctions of E0 with eigenvalues of
ε(ki

2) and ε(kj
2), respectively, which are defined by eq 12. Hess

and co-workers reported variousDK2 applications. In addition to
the atomic and molecular systems that contain heavy elements,
the DK2 method was applied to crystalline systems with the
crystal orbital approach under periodic boundary conditions.20

Their applications include the calculation of spectroscopic
constants21�26 such as molecular geometries, frequencies, and
dissociation energies, fine structure splittings,27,28 electronic
excitation energies,29�38 laser-induced chemiluminescence,39,40

ionization potentials, and electron affinities,41 as well as electrical
properties such as dipole moments,42 dynamic multipole polariz-
abilities, dispersion coefficients,43�45 and nuclear quadrupole
coupling tensors.46,47 Independent of the work in the Hess group,
theDK2 approachwas implemented in the framework of the linear
combination of Gaussian-type orbitals (LCGTO) approach to
density functional theory (DFT) by the R€osch group.48 R€osch and
co-workers applied their LCGTO�DFT approach using the DK2
method to the electronic structure investigations of large molec-
ular systems49�51 and diatomic molecules.52�56

2.2. Higher-Order/Arbitrary-OrderDouglas�KrollHamiltonians
For ordinary chemical problems, the DK2 approach gives

satisfactory results. A numerical analysis by Molzberger and
Schwarz57 shows that the DK2 method recovers energy up to
the order of Z6R4 (R = 1/c) to a large extent and also includes a
significant part of the higher-order terms. However, the DK2
approach does not completely recover the stabilizing higher-
order energy contributions, as shown in Figure 1. The straight-
forward way to include higher-order relativistic effects is to apply
further unitary transformations.

Nakajima and Hirao58,59 proposed a higher-order DK meth-
od based on exponential parametrization of the unitary trans-
formation,

Un ¼ expðWnÞ ð26Þ

This exponential-type unitary operator leads to more compact
formulas than the unitary operator defined by Douglas and
Kroll. The third-order DK (DK3) Hamiltonians in the two-
component form are given as

HDK3 ¼ HDK2 þ 1
2
½W1, ½W1, E1�� ð27Þ
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where [a,b] denotes the commutator. The DK3 method has
been applied in various studies by Nakajima and co-workers
to the electronic structures and spectroscopic properties of
ground and excited states including spectroscopic constants,60�62

excitation energies,63 potential energy curves in ground and
excited states,64 photoelectron spectra,65 and electric prop-
erties such as polarizabilities and hyperpolarizabilities.66

Thereafter, Wolf et al.67 introduced a generalized DK meth-
od with Hamiltonians up to the fifth order by adapting a
power series expansion, as follows:

Un ¼ f ðWnÞ ¼ ∑
¥

k¼ 0
akWn

k ð28Þ

where the unitary condition, f(Wn)f(�Wn) = 1, imposes con-
straints on the coefficients ak. Without a loss of generality, the
condition a0 = a1 = 1 can be imposed, from which it follows that
a2 = 1/2. Wolf et al. found that the DK Hamiltonian is
independent of the chosen parametrization of the unitary trans-
formation up to the fourth order; higher-order DK Hamiltonians
depend slightly on the chosen parametrization of the unitary
transformations. van W€ullen68,69 extended the DK transforma-
tion to the sixth order (DK6) and discussed the differences
among the various choices of parametrization. His numerical
findings show that the fifth- and sixth-order DK results are
quite insensitive to the parametrization for the unitary transfor-
mation steps involved in the DK procedure. Later, the DK
protocol was extended to arbitrary-order DK Hamiltonians by
Reiher and Wolf.70�73 The form of the nth transformed four-
component Hamiltonian is generally given by

Hn ¼ ∑
2n þ 1

i¼ 0
Ei þ ∑

i g 2n þ 2
EðnÞ
i þ ∑

i g n þ 1
OðnÞ

i ð29Þ

There is no superscript in the even terms of an order of no more
than 2n þ 1 because they remain unchanged in the following
unitary transforms. This is the 2n þ 1 rule that was first
mentioned in ref 58. The kth order Wk operator is obtained

by solving

½Wk, E0� þOðk � 1Þ
k ¼ 0: ð30Þ

The matrix elements of its two-component part can be eval-
uated by

ÆΩijWkjΩjæ ¼
ÆΩijOðk � 1Þ

k jΩjæ
εðki2Þ þ εðkj2Þ ð31Þ

The block structures of these four-component operators are

Ek ¼ Ek 0
0 ð�1Þk þ 1Ek

 !
ð32Þ

Ok ¼ 0 Ok

ð�1ÞkOk 0

 !
ð33Þ

Wk ¼ 0 Wk

ð�1Þk þ 1Wk 0

 !
ð34Þ

The two-component DK Hamiltonian truncated at the nth
order is finally given by

HDKk ¼ ∑
k

i¼ 0
Ei ð35Þ

Due to the form of the transformed four-component operator
(eq 29), it is sufficient to calculate the nth order DK Hamiltonian
with only [n/2] unitary transformations, where [a] denotes the
integer part of number a. Reiher and co-workers applied the
higher-order DKmethod to various properties including spectro-
scopic constants,74 potential energy curves in ground and excited
states,75,76 electric field gradients,77,78 nuclear quadrupole
moments,79 and electron densities at an atomic nucleus.80

There is significant freedom for the selection of parametriza-
tions of the unitary transformation in the DK method. It is noted
that all choices converge to the same spectrum although this does
not mean that the various DK Hamiltonians are the same;
therefore, the truncation of such an expansion can yield different
spectra. As already mentioned, van W€ullen68 has shown that the
DK5 and DK6 results are almost independent of the selections
for parametrization in the DK transformation. Recently, Peng
and Hirao81 also found that differences in the various parame-
trizations of the unitary transformation are negligible and that
various choices converge to the same eigenvalues in the total
energy. Table 1 indicates the ground-state energies for one-
electron hydrogen-like atoms with Z = 80 computed by the DK
methods employing various parametrizations of the unitary
transformation. In this table, five types of parametrization are
considered: (i) exponential parametrization, eq 26, (ii) the tradi-
tional square-root form, eq 28, (iii) the McWeeny choice, (iv) the
Cayley-type expression, and (v) optimal unitary parametrization,
eq 21. At this accuracy, the energies do not converge up to DK20;
however, the various parametrizations converge to an accuracy of
12 digits. Consequently, they concluded that exponential para-
metrization is recommended due to its simple formulation and
lower computational cost.

Figure 1. E/Z2 versus γ = ZR for hydrogen-like ions.Reprinted with
permission from ref 57. Copyright 1996 Springer.



389 dx.doi.org/10.1021/cr200040s |Chem. Rev. 2012, 112, 385–402

Chemical Reviews REVIEW

2.3. Related Two-Component Approaches
Recently, the interest of many quantum chemists has been

devoted to the calculation and treatment of the electronic struc-
tures of polyatomic systems that include heavy elements. However,
even now, the DC(B) equation with four-component spinors
demands intensive computational efforts to solve, and its applica-
tions are currently limited to small- to medium-size molecular
systems. In addition to the DKmethod, to improve efficiency and
cost-effectiveness, several quasi-relativistic approximations have
been proposed that ignore the relativistic correction to the
electron�electron or the spin�orbit interactions. Here, we will
briefly introduce several quasi-relativistic approaches other than
the DK method.
2.3.1. Breit�Pauli Approximation. From eq 4, the

Schr€odinger�Pauli equation including only the large components
is obtained as

V þ ðσ 3 pÞ
c2

2c2 � ðV � EÞ ðσ 3 pÞ
" #

ΨL ¼ EΨL ð36Þ

with the normalization condition of

ÆΨLj1þ X†XjΨLæ ¼ 1 ð37Þ
where the X operator is defined by

X ¼ cσ 3 p
2c2 � ðV � EÞ: ð38Þ

Note that no approximation has been made so far. The Breit�
Pauli (BP) approximation82 is introduced by expanding the inverse
operators in the Schr€odinger�Pauli equation in powers of
(V � E)/(2c2) and ignoring the higher-order terms. Alterna-
tively, the BP approximation can be obtained by truncating the
Taylor expansion of the FW-transformed Dirac Hamiltonian up

to the (p/c)2 term. The one-electron BP Hamiltonian for the
Coulomb potential V = Zr/r3 is represented by

HBP ¼ T þ V � p4

8c2
þ ZδðrÞ

8c2
þ Zs 3 l
2c2r3

ð39Þ

where r � p = l and σ = 2s and the T operator is the
nonrelativistic kinetic energy. The BP equation has the well-
knownmass-velocity, Darwin, and spin�orbit operators. Although
the BP equation gives reasonable results in the first-order perturba-
tion calculation, it cannot be used in the variational treatment.
2.3.2. Regular Approximation.One of the shortcomings of

the BP approach is that the expansion in (p/c)2 is not justified
when the electronic momentum is too large, for example, for a
Coulomb-like potential. The zeroth-order regular approximation
(ZORA) avoids this disadvantage by expanding E/(2c2 � V) up
to the first order so that the ZORA Hamiltonian is variationally
stable. The ZORA Hamiltonian was first derived by Chang et al.
in 198683 and later rediscovered as an approximation to the
FW transformation by van Lenthe et al.84�86 The ZORA
Hamiltonian of one electron in an external potential V is given by

HZORA ¼ V þ ðσ 3 pÞ
c2

2c2 � V
ðσ 3 pÞ ð40Þ

The higher-order RA Hamiltonians such as the first-order RA
(FORA) have been derived; however, they cannot be used
variationally because of the higher-order derivatives. Instead,
starting from an un-normalized FW transformation, Dyall and
van Lenthe87 introduced the infinite-order RA (IORA) equation,

HZORAΦIORA ¼ EIORAð1þ X†
0X0ÞΦIORA ð41Þ

with

X0 ¼ cσ 3 p
2c2 � V

ð42Þ

Table 1. One-Electron (Z = 80) Ground-State Energies for the DK Scheme Employing Various Parameterizations of the Unitary
Transformationa

exp sqrt-exp McW-exp CA-exp opt-exp

DK2 �3523.324 89

DK3 �3533.119 62

DK4 �3531.708 61

DK5 �3532.462 660 97 0.009 351 55 �0.0187 143 9 �0.004 677 19 0.001 134 73

DK6 �3532.101 216 73 �0.001 297 20 0.002 592 91 0.000 648 41 �0.000 157 35

DK7 �3532.225 419 34 0.000 071 46 0.000 021 47 �0.000 012 22 0.000 004 92

DK8 �3532.177 057 38 0.000 038 88 �0.000 113 98 �0.000 024 58 0.000 005 53

DK9 �3532.200 248 65 0.000 005 71 0.000 007 09 �0.000 000 07 0.000 000 24

DK10 �3532.188 489 71 �0.000 008 28 0.000 016 86 0.000 004 10 �0.000 000 99

DK11 �3532.193 768 23 0.000 000 10 �0.000 000 21 �0.000 000 04 0.000 000 01

DK12 �3532.191 321 15 0.000 000 71 �0.000 001 50 �0.000 000 37 0.000 000 09

DK13 �3532.192 566 62 0.000 000 14 �0.000 000 30 �0.000 000 07 0.001 134 73

DK14 �3532.191 909 97 �0.000 000 25 0.000 000 50 0.000 000 12 0.000 000 02

DK15 �3532.192 234 41 0.000 000 02 �0.000 000 04 �0.000 000 01 �0.000 000 03

DK16 �3532.192 072 64 0.000 000 02 �0.000 000 05 �0.000 000 01 0.000 000 00

DK18 �3532.192 111 88 �0.000 000 01 0.000 000 03 0.000 000 01 0.000 000 00

DK19 �3532.192 135 64 0.000 000 00 0.000 000 00 0.000 000 00 0.000 000 00

DK20 �3532.192 123 33 0.000 000 00 0.000 000 00 0.000 000 00 0.000 000 00
aAll results are in atomic (hartree) units and are obtained with an even-tempered Gaussian basis set of 50 exponents. DK2�DK4 and DK5�DK20
results are taken from refs 68 and 81, respectively.
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The IORA equation corresponds to the ZORA equation with a
modified metric operator. The numerical results using the IORA
method are considerably improved over those obtained using
ZORA and are superior to those of FORA for a many-electron
system. The RA approach has the advantage of being easier to
implement than the DK approach because the RA Hamiltonians
are simple and are evaluated numerically in direct space. One of
the disadvantages of the ZORA and IORAmethods is an incorrect
dependence of the energy eigenvalues on the choice of gauge in the
electrostatic potential.

2.3.3. Relativistic Schemeby Eliminating Small Compo-
nents. It is difficult to solve the Schr€odinger�Pauli eq 36 with
the normalization condition (eq 37) since eq 36 has both energy
and potential in the denominator. One appropriate approxima-
tion is the relativistic substitutive correction, which involves the
replacement of the E � V in the denominator by classical relati-
vistic kinetic energy,

TR ¼ ðc4 þ p2c2Þ1=2 � c2 ð43Þ

The relativistic approach based on this approximation is referred
to as the relativistic scheme by eliminating small components
(RESC).88�91 The resulting RESC Hamiltonian, HRESC, can be
separated into spin-free (sf) and spin-dependent (sd) parts, as
follows:

HRESC ¼ Hsf
RESC þHsd

RESC ð44Þ

where

Hsf
RESC ¼ TR þOQp 3VpQO

�1 þ 2cOQ 1=2VQ 1=2O�1 ð45Þ

Hsd
RESC ¼ iOQσ 3 ðpVÞ � pQO�1 ð46Þ

Here, the O and Q operators are defined by

O ¼ 1
E0 þ c2

1þ p2c2

ðE0 þ c2Þ2
" #1=2

ð47Þ

Q ¼ c
E0 þ c2

ð48Þ

For practical calculations,HRESC is symmetrized to be Hermitian
for mathematical convenience instead of due to physical sig-
nificance. It is known that the RESC method works well for a
number of systems92�95 and gives similar results for chemical
properties as the DK method. However, very large exponents in
the basis set can lead to variational collapse in a low-order RESC
approximation, which includes only the lowest truncation of the
O operator.

2.3.4. Direct Perturbation Theory. To separate the posi-
tive- and negative-energy eigenstates, the direct perturbation
theory (DPT) was originally proposed by Rutkowski96,97 and
later developed by Kutzelnigg.98,99 In DPT, the bispinor in the
Dirac equation,

Ψ ¼ ΨL

ΨS

 !
ð49Þ

is replaced by the modified bispinor,

~Ψ ¼ ΨL

~Ψ
S

 !
¼ ΨL

cΨS

 !
ð50Þ

This defines themodifiedDirac equation, which is shifted by�c2,

Dð0Þ þ 1
c2
Dð2Þ

� �
~Ψ ¼ E Sð0Þ þ 1

c2
Sð2Þ

� �
~Ψ ð51Þ

where

Dð0Þ ¼ V σ 3 p
σ 3 p �2

 !
ð52Þ

Dð2Þ ¼ 0 0
0 V

 !
ð53Þ

Sð0Þ ¼ 1 0
0 0

 !
ð54Þ

Sð2Þ ¼ 0 0
0 1

 !
ð55Þ

The zeroth-order equation is the L�evy�Leblond equation,100

Dð0ÞΨð0Þ ¼ Eð0ÞSð0ÞΨð0Þ ð56Þ
which is equivalent to the nonrelativistic Schr€odinger equation.
To derive the high-order corrections in DPT, the perturbation
parameter is chosen to be 1/c and the expansion is performed in
even powers. The lowest-order relativistic correction to the
energy is given by

Eð2Þ ¼ ÆΨð0ÞjDð2Þ � Eð0ÞSð2ÞjΨð0Þæ

¼ ÆΨSð0ÞjV � Eð0ÞjΨSð0Þæ ð57Þ

2.3.5. Normalized Elimination of the Small Component.
Dyall101,102 proposed the normalized elimination of the small
component (NESC) method based on the modified Dirac
equation. In the NESC method, the pseudo-large component,
ΦL, is defined by

ΨS ¼ σ 3 p
2c

ΦL ð58Þ

The modified Dirac equation in the NESC approach is given by

TΦL þ VΨL ¼ EΨL ð59Þ

TΨL þ 1
4c2

ðσ 3 pÞðV � EÞðσ 3 pÞΦL ¼ TΦL ð60Þ
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The elimination of the pseudo-large component,ΦL, from eqs 59
and 60 leads to the one-electron NESC equation,

T � ðI �U†ÞTðI �UÞ þ V þ 1
4c2

U†ðσ 3 pÞVðσ 3 pÞU
� �

ΨL ¼ E 1þU†TU
2c2

� �
ΨL ð61Þ

with the relationship between the large and pseudo-large com-
ponents being defined by

ΦL ¼ UΨL ð62Þ
where the U operator is generally energy-dependent. The
approximation U = I leads to a low-order approximation of the
NESC approach,

T þ V þ 1
4c2

ðσ 3 pÞVðσ 3 pÞ
� �

Ψ ¼ E 1þ T
2c2

� �
Ψ ð63Þ

which was found to be variationally unstable byDyall. Filatov and
Cremer103�105 improved the low-order NESC method by in-
troducing the effective potential (EP), Veff,

T þ V þ 1
4c2

ðσ 3 pÞVeff ðσ 3 pÞ
� �

Ψ ¼ E 1þ T
2c2

� �
Ψ ð64Þ

The NESC-EP method gives satisfactory results for equilibrium
bond lengths, vibrational frequencies, and dissociation energies,
as well as the magnetic shielding constants,106 for molecules that
contain heavy elements.

2.3.6. Infinite-Order Two-Component Method. The
approach that is most closely related to the DK method was
proposed by Barysz, Sadlej, and Snijders (BSS)107 and is called
the infinite-order two-component (IOTC) method. Similar to
the DK approach, the first step is the transformation of HD with
the free-particle FW transformation. Instead of block-diagonaliz-
ing the Dirac Hamiltonian using sequential unitary transforma-
tions, they proposed a different approach to block-diagonalize
H1 =U0HDU0

† in one step by employing a unitary transformation
similar to the form of the FW transformation. They presented the
results for the leading order contribution in their first paper and
later extended it to an infinite order by adopting an iterative
scheme.108,109 This approach is often called the BSS method in
the family of the IOTCmethod. An efficient implementation of the
IOTCmethod was proposed by Ilia�s and Saue.110 In contrast to the
BSS approach, they avoid the preliminary free-particle FW trans-
formation and generate the IOTCHamiltonian through a one-step
decoupling transformation starting from the Dirac operator in the
finite basis representation. Their IOTC approach provides the
decoupled Hamiltonian from a similarity transformation, as follows:

HIOTC ¼ X†HDX ¼ HþIOTC 0
0 H�IOTC

 !
ð65Þ

where X = VUV†S and the matrix V is the orthogonalization
matrix for the atomic basis, namely, satisfying V†SV = 1. Ilia�s and
Saue formulated the matrix U as the unitary decoupling matrix

given by U = W1W2 with

W1 ¼ 1 �R†

R 1

 !
ð66Þ

W2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R†R

p
0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RR†

p
 !

ð67Þ

The detailed algorithm to obtain the picture-change operator, R,
through a one-step procedure is shown in ref 110. The two-
component approach closely related to the IOTC method was
proposed by Kutzelnigg and Liu.111�114

2.4. Electron�Electron Interaction in the DK Hamiltonian
The derivation of the DK transformation is only valid for the

one-electron Dirac equation with an external potential. Thus, the
theory must be extended to obtain the relativistic many-electron
DK Hamiltonian with the electron�electron Coulomb or Breit
interaction. Most of the DK applications developed so far for
many-electron systems are based on the no-pair approximation15

to a greater or lesser extent. In the no-pair DK approach, the
electron�electron interaction is transformed only in the first-
order DK (or free-particle FW) step, that is, only the one-
electron potential is transformed in the sequence DK transfor-
mation and the two-electron term is kept in the free-particle FW
transformed form, as follows:115,116

Vnpði, jÞ ¼ AiAj
1
rij
þ Ri

1
rij
Ri þ Rj

1
rij
Rj þ RiRj

1
rij
RiRj

" #
AiAj

ð68Þ

Ai ¼ Ei þ c2

2Ei

 !1=2

ð69Þ

Ri ¼ cσ i 3 pi
Ei þ c2

¼ Kiσ i 3 pi ð70Þ

In eq 68, we omit the two-electron terms derived from the Breit
operator, which are given explicitly in ref 15. A further approxi-
mation to the two-electron DK term is to neglect the relativistic
kinematics correction to the electron�electron interaction in the
no-pair DKHamiltonian, which yields the simplest many-electron
DK Hamiltonian, that is, the one-electron DK Hamiltonian with
the electron�electron Coulomb operator in the nonrelativistic
form. This approximation is usually implemented in the variety
of program packages and is often adopted in the practical scalar
DK calculations.

The effects of the relativistic correction to the electron�
electron interaction in the DK Hamiltonian have been argued.
Matveev andR€osch117 proposed an extension of theDK2 approach
to the pure DFT problem that accounts for the second-order DK
correction to the classical Hartree portion of the electron�electron
interaction. In their approach, the exchange�correlation contri-
bution is untransformed because the electron charge density
fitting scheme with auxiliary basis functions is adopted. They
show that first-order DK treatment of the two-electron term is
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often sufficient and that the second-order correction is much less
important. Nakajima and Hirao118 also developed an extended
DK approach for the relativistic many-electron Hamiltonian
including the electron�electron interaction. In their approach,
HF-exchange, exchange�correlation potentials, and the Coulomb
interaction are relativistically corrected. To consider the higher-
order DK transformation to the two-electron interaction, the
approach of Nakajima and Hirao adopts the effective one-electron
potential in the Dirac�Hartree�Fock (DHF)/Dirac�Kohn�
Sham (DKS) operator as an expansion parameter in the DK
transformation. The DHF or DKS operator is generally written as

FDHF=DKS ¼

Vnuc þ c2 þ JLL þ JSS� texKLL� txcVxc cσ 3 p� texKLS

cσ 3 p� texKSL Vnuc� c2 þ JLL þ JSS� texKSS� txcVxc

 !

ð71Þ
Here, Vnuc is the nuclear potential and Vxc is the exchange�
correlation potential. The matrix elements for the Coulomb and
exchange operators, JXX andKXY (X, Y = L or S), respectively, are
given by

JXXφð1Þ ¼ ∑
i

Z
jX�
i ð2ÞjX

i ð2Þ
r12

dτ2

" #
φð1Þ ð72Þ

KXYφð1Þ ¼ ∑
i

Z
jY�
i ð2Þφð2Þ

r12
dτ2

" #
jX
i ð1Þ ð73Þ

whereji
L andji

S are the two-component large and small spinors,
respectively, and φ is an arbitrary two-component function. The
parameter txc is set to zero and one for the DHF and DKS
approaches, respectively, and the constant tex is the parameter for
the hybrid DFT approach and is usually set to zero for the pure
DFT approach. The DHF/DKS operator, eq 71, can be written
in the same form as the one-electron Dirac Hamiltonian in eq 4
through the following replacements:

Vnuc þ JLL þ JSS � texK
XX � txcVxc f V ð74Þ

σ 3 p�
tex
c
KXY f σ 3 p ð75Þ

By substituting these relations into the one-electron DK terms,
it is straightforward to obtain the DKn�Fock operators with

the DK transformation to the DHF/DKS potential in the two-
component DKn�HF/KS equation,

FDKnψi ¼ εiψi ð76Þ

where ψi is the (orthonormalized) two-component DKn spinor
and εi is its spinor energy. From Table 2, it is evident that the
improvement of the two-electron treatment makes the orbital
energy values closer to the four-component DC results. The
numerical calculations show that the third-order DK transforma-
tion to both the one-electron and two-electron Hamiltonians
gives excellent agreement with the four-component relativistic
approach. The first-order DK correction to the two-electron
interaction has also been shown to be satisfactory for both
atomic and molecular systems. van W€ullen and Michauk119

developed an efficient and accurate approximation to the
DK transformation of the two-electron term. Their approach
adopts a model potential, which is determined by an atomic
calculation, to estimate the relativistic correction to the
electron�electron interaction in molecules; their approach
involves a single DK transformation and negligible compu-
tational effort.

2.5. Spin�Orbit Effects
The two-component DK Hamiltonian can be separated into

the spin-free and spin-dependent parts by using the Dirac
relation,

ðσ 3 uÞðσ 3 vÞ ¼ u 3 v þ iσ 3 u� v ð77Þ

The spin-dependent part includes the DK-transformed one- and
two-electron spin�orbit (SO) terms. Since the cost of the DK
transformation to the two-electron SO term is high, usual applica-
tions of the SO term adopt the no-pair approximation. In this
context, Pestka and Sadlej pointed out that an approximation in
which the different order DK transformations are inconsistently
applied to one- and two-electron terms gives an incorrect long-
range limit,120 while, to our knowledge, such treatment has
successfully been applied to most atomic and molecular calcula-
tions. The DK-transformed SO Hamiltonian with the no-pair
approximation is given by

HSO
np ¼ ∑

i
∑
A
AiKi

ZA

riA3
ðriA � piÞ 3σ iKiAi

� ∑
i 6¼j

AiKiAj
rij
rij3

� pi

 !
:ðσ i þ 2σ jÞAjKiAi ð78Þ

Table 2. Spin�Orbit Splittings (in au) of the Hg Atoma

DK2þDK2 DK3þNR DK3þDK1 DK3þDK2 DK3þDK3 DC

2p 71.1300 (�1.07) 74.1102 (3.07) 71.4960 (�0.56) 72.0377 (0.19) 71.9654 (0.09) 71.9008

3p 15.9073 (�1.39) 16.6891 (3.45) 16.0073 (�0.77) 16.1829 (0.32) 16.1546 (0.14) 16.1318

4p 3.8847 (�1.51) 4.0938 (3.79) 3.9042 (�1.01) 3.9604 (0.41) 3.9506 (0.16) 3.9442

5p 0.6867 (�1.55) 0.7269 (4.22) 0.6890 (�1.22) 0.7007 (0.46) 0.6986 (0.16) 0.6975

3d 3.4373 (�0.01) 3.9576 (15.12) 3.4208 (�0.49) 3.4377 (�0.00) 3.4374 (�0.01) 3.4378

4d 0.7480 (�0.03) 0.8689 (16.13) 0.7421 (�0.82) 0.7482 (0.00) 0.7480 (�0.03) 0.7482

5d 0.0759 (0.26) 0.0895 (18.23) 0.0751 (�0.79) 0.0758 (0.13) 0.0757 (0.00) 0.0757

4f 0.1629 (0.00) 0.2501 (53.53) 0.1620 (�0.55) 0.1629 (0.00) 0.1629 (0.00) 0.1629
aValues in parentheses are deviations (%) of DK spin�orbit splittings relative to the DC values, [(ΔEDKnl�DKn2

SO � ΔEDC
SO)/ΔEDC

SO] � 100.
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The two-electron SO terms are the spin�same-orbit (SSO) and
spin�other-orbit (SOO) terms, respectively. The no-pair SO
Hamiltonian corresponds to theDK1 SOHamiltonian. In contrast
to the BP-type SO Hamiltonian, the DK-type SO Hamiltonian is
variationally stable.

For scalar relativistic effects, it is usually sufficient to only
include the one-electron term and neglect the spin-free con-
tribution of the DK transformation for the two-electron interac-
tion. On the other hand, it is known that the contribution of the two-
electron SO term to a variety of property calculations is important.
For the magnetic shielding constants, for example, the two-electron
SO contribution is almost 30% of the one-electron SO contribution
for fluorine substituents.121,122 However, the evaluation of the two-
electron SO integral is costly. To reduce the computational effort for
evaluating the full SO Hamiltonian, several approximations have
been proposed. Hess et al.123 introduced a pseudo-one-electron
Fock-type SO operator based on a mean-field (MF) approximation
to the full SO Hamiltonian. Following the idea of the MF approx-
imation to the SO Hamiltonian, Schimmelpfennig124 implemen-
ted an atomic mean-field integral (AMFI) program with addi-
tional approximations: (1) only the atomic one-center term is
retained, and (2) the atomic orbitals obtained from the spheri-
cally averaged atomic SCF calculations with predetermined
valence-shell occupations are used as the mean-field orbitals.
The Cartesian components of the matrix element of the no-pair
AMFI Hamiltonian are given by

ÆμjðHAMFI
np Þtjνæ ¼ ÆμjðHSO1

np Þtjνæþ
1
2 ∑
mf -orbs

M
nM½2ÆμMjðHSO2

np ÞtjνMæ

� ÆμMjðHSO2
np ÞtjMνæ� ÆMμjðHSO2

np ÞtjνMæ�, t ¼ ðx, y, zÞ
ð79Þ

where Hnp
SO1 and Hnp

SO2 are the one- and two-electron SO terms,
respectively, with the no-pair approximation. The summation of
the two-electron part runs over occupied (mean-field) spatialM(l,
ml) atomic orbitals with the occupation number nM. The compu-
tational efficiency and accuracy of the AMFI approximation with
the spin-freeDKHamiltonian have been demonstrated in a variety
of applications such as spin�orbit splittings,125�127 excitation
energies,128�130 spectroscopic constants for molecules,131 and
phosphorescent radiative lifetimes.132 By adoption of the AMFI
technique, Gagliardi et al.133 implemented the variational two-
component SODFT program in which the spin-free relativistic
part is treated by the DK2 method. Ilia�s et al.134 proposed a two-
component extension of the electron correlation methods in-
cluding second-orderMøller�Plesset perturbation (MP2), coupled-
cluster (CC), and configuration-interaction (CI) methods
based on the spin-free DK2method with theMFSO approxima-
tion. Table 3 shows the efficiency of the AMFI approximation
through a comparison of the computational timings between the
two-component DK-AMFI and four-component DC calcula-
tions using the MOLFDIR2 program package. Clearly, the AMFI
approximation gives better timing than the four-component DC
calculation, especially in the integral generation and HF steps.

Boettger135 proposed a simple approximation that adopts only
one-electron SO integrals with modification of the nuclear
charge, Z, in the one-electron SO Hamiltonian. The approach
is called the screened-nuclear spin�orbit (SNSO) approxima-
tion. The two-electron SO effect is altered by the replacement of
the nuclear charge, Z, with the effective charge, Zeff(l), which

depends on the angular momentum, l,

Zeff ðlÞ ¼ Z�Q ðlÞ ð80Þ
with Q(l) = 0, 2, 10, 28 for l = 0, 1, 2, 3, respectively. The
computational cost of the construction of the SNSOHamiltonian
is negligible because only the evaluation of the one-electron SO
integrals is required. It was found that the SNSO approximation
improves the fine structure of heavy atoms.

Beyond the no-pair approximation to the SO Hamiltonian,
Majumder et al.136 proposed theDK2-transformedSOHamiltonian
using the SNSO approximation. Their approximation implicitly
includes the second-order DK effect on the SO interaction. They
applied their approximation to various atomic and molecular
properties such as spin�orbit splittings, g-tensor shifts, bond
lengths, vibrational frequencies, and binding energies. Their calcula-
tions show that the original SNSO Hamiltonian is insufficient
for an accurate estimation of the fine structure, although it is
attractive for determining approximate molecular g-values.
Despite the success of their approach with the DK2-SNSO
approximation, van W€ullen137 pointed out that it is inconsistent
because the spin-dependent part, (σ 3 p)V, in the W1 term is
screened. Instead, vanW€ullen andMichauk119 proposed another
higher-order SNSO approximation in which the screening is
applied to the spin-dependent part of the matrix elements of
(σ 3 p)V(σ 3 p) in the E1 term before the DK transformation.
Peralta and Scuseria138 developed the two-component noncollinear
spin-density functional method based on the higher-order
DK-transformed SNSO approximation. The inclusion of the
DK4-SNSO Hamiltonian considerably improves the orbital energy
splittings obtained by the unscreened one-electron SOHamiltonian.

3. PRACTICAL ASPECTS

3.1. Implementation of the DK Hamiltonian
For a practical calculation, the matrix elements of the DK

Hamiltonian are evaluated using the resolution of identity (RI)
with finite basis functions in the space spanned by the eigenfunc-
tions of the squared momentum, p2, following Buenker et al.139

The procedure is usually adopted with the basis functions in an
uncontracted form inside the Douglas�Kroll machine. Let us
consider an evaluation of the matrix elements containing any
function f(p2) in momentum space,

Mμν½f ðp2Þ� � Æχμjf ðp2Þjχνæ ð81Þ

This can be achieved by the following procedure:
(1) Transformation of M[p2] to an orthonormal basis:

~M½p2� ¼ X†M½p2�X ð82Þ

Table 3. Comparison of Timing (in s) of Two- And Four-
Component Calculations for TlH Molecule

step DK2þAMFIa DCb

2e integrals 391 (0.086) 4 538

SCF 1 822 (0.059) 30 801

integral transform 44 689 (0.256) 174 265

CCSD 19 724 (1.038) 19 002

total 66 626 (0.291) 228 606
a Fraction of the four-component DC timing in parentheses. b SS two-
electron integrals discarded.
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where

X†SX ¼ 1 ð83Þ

(2) Diagonalization of ~M[p2]:

~M½p2�U ¼ Uλ ð84Þ

where U is unitary and λ is diagonal, which results in

~M½p2� ¼ UλU† ð85Þ

(3) Evaluation of the function of the eigenvalues:

~M½f ðp2Þ� ¼ Uf ðλÞU† ð86Þ

(4) Back-transformation to the original basis:

M½f ðp2Þ� ¼ ðX†Þ�1 ~M½f ðp2Þ�ðXÞ�1

¼ ðSXUÞf ðλÞðSXUÞ† ð87Þ

The evaluation is exact only for complete basis functions, but it
was shown by numerical calculations that the RI scheme in
momentum space with the uncontracted basis functions is
sufficiently accurate. In this context, Kutzelnigg and Liu112

pointed out that the eigenfunctions of approximate quasi-relati-
vistic operators are more singular than the Dirac solutions so that
additional errors may occur in the quasi-relativistic approach if it
is used with regular basis functions. Indeed, Saito140 showed
that the RI scheme in the momentum space overestimates the
total DK3 energies for superheavy atoms in comparison with
theB-spline calculation although the differences are small (i.e., on
the order of millihartree). On the other hand, the spherical
wave results of van W€ullen141 show no indication that the
use of Douglas�Kroll operators with regular basis sets intro-
duces errors larger than those of a four-component treatment.
Thus, the argument of Kutzelnigg and Liu remains an open
question.

To calculate the matrix elements of DK Hamiltonians, the
terms, including both W1 and E1, have to be calculated from
scratch. For example, W1E1W1 is given by

W1E1W1 ¼ AðRvRÞAR�2ðRE1RÞAvA
� AðRvRÞAR�2ðRE1RÞR�2AðRvRÞA
� AvAðRE1RÞAvAþ AvAðRE1RÞR�2AðRvRÞA ð88Þ

Here, R�2 is calculated by

R�2 ¼ ðE0 þ c2Þ2
c2p2

ð89Þ

and RE1R is given by

RE1R ¼ AðRVRÞAþ AR2VR2A ð90Þ
This standard approach to the matrix construction of the DK
Hamiltonian requires a huge number of matrix multiplications.

Since the computational cost increases exponentially with the
order of DK transformation, it is difficult to obtain results for very
high-order DK Hamiltonians. Several groups have proposed
approximations to efficiently construct the DK Hamiltonian
matrix. Gagliardi et al.142 introduced the two-center approxima-
tion, in which the matrix elements of the DK Hamiltonian are
evaluated within basis sets of two atoms at a time. Matveev and
R€osch143 avoided the full transformation by adopting an atomic
ansatz for the relativistic projection transformation. In their
approximation, the kinematic factors were taken from some
approximate relativistic calculations on atoms. The merit is that
its matrix representation becomes independent of the molecular
geometry so that the DK gradient and Hessian are simplified.
Thar and Kirchner144 proposed a scheme that confines the DK
transformation to either each molecule, atom, or heavy atom.
Instead of using the locality or sparsity, Peng and Hirao81

reduced the number of matrix multiplications by applying a
simple transformation to all DK intermediate operators instead
of complicated step-by-step symbolic manipulations. The num-
ber of matrix multiplications in their approach scales with only
polynomial behavior with respect to the DK order and the
computational cost is much less than that of the standard
approach.

3.2. Energy Derivatives
An analytical derivative technique for the scalar DK2 approach

was proposed by R€osch and co-workers.145,146 Since the matrix
elements of the relativistic kinetic and potential operators in the
DK Hamiltonian are practically calculated by the RI technique,
the analytical expression for the DK energy derivatives is com-
plicated in comparison with the nonrelativistic case. For example,
the first derivative of the relativistic kinetic energy integral,
E0 � c2, is derived from the following procedure. The explicit
expression for the relativistic kinetic energy integral in AO basis is
given by (note, small letters denote diagonal matrices):

~T ¼ ðSXBÞtðSXBÞ† ð91Þ

where X = Us�1/2; U and s are eigenvectors and eigenvalues,
respectively, of the overlap matrix S; tvv = (p

2c2þ c4)1/2� c2; and
B is the eigenvector of the doubled nonrelativistic kinetic energy.
By taking the derivative by a nuclear coordinate a,

D~T
Da

¼ DS
Da

XB

� �
tðSXBÞ† þ h:c:

� �
þ S

DX
Da

B

� �
tðSXBÞ† þ h:c:

� �

þ SX
DB
Da

� �
tðSXBÞ† þ h:c:

� �
þ ðSXBÞ Dt

Da
ðSXBÞ† ð92Þ

with

Dt
Da

¼ c2

2E0

D½p2�
Da

ð93Þ

∂[p2]/∂a is readily computed using the technique described in ref
145. The derivatives, such as ∂X/∂a and ∂B/∂a, are computed by
differentiating the eigenvalue equation U†SU = s and using the
diagonal structure of the eigenvaluematrix, s, to obtain ∂U/∂a and
∂s/∂a. The displacement derivatives of the matrix elements of the
effective nuclear potential are calculated similarly to the derivatives
of the kinetic energy matrix. Instead of this complicated proce-
dure, de Jong et al.147 proposed an efficient and accurate mixed
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analytical/numerical method to calculate DK gradients. In their
approach, the gradients of the nonrelativistic integrals are
computed analytically and the gradient of the difference between
the nonrelativistic and DK one-electron integrals is computed
numerically. The DK gradients are obtained by the addition of
the relativistic correction to the nonrelativistic term. Wahlgren
et al.148 proposed a similar approach for the gradient calculation
in which the one-center approximation is adopted for the
difference between the nonrelativistic and DK Hamiltonians.
Their approximation works well, provided that the core electrons
are frozen. Vallet et al.149 and Thar and Kirchner144 simply
evaluated the DK gradients by adopting relativistic densities in
the nonrelativistic gradient routine. The assessment of Thar and
Kirchner for halogen dimers shows that the geometries obtained
by this approach are in excellent agreement (error smaller than
0.02 pm) with the geometries obtained from numerical gradi-
ents; therefore, the approach leads to an acceptable approxima-
tion of relativistic DK gradients.

3.3. Basis Sets
One-particle basis sets determine the accuracy of quantum

chemical calculations. It is widely recognized that the Gaussian-
type orbital (GTO) is particularly attractive for ab initio MO
calculations mainly because it has the advantage that multicenter
two-electron integrals can be evaluated easily. The Gaussian basis
sets have reached a high level of sophistication and are capable of
achieving excellent results for molecular calculations. The non-
relativistic contracted basis sets can produce erroneous results for
elements beyond the first row. To appropriately incorporate
relativistic effects, several relativistic basis sets constructed by the
DK method have been proposed.

The simple construction of relativistic basis sets with the DK
method retains the nonrelativistic exponents and determines the
contraction coefficients of the basis function from atomic calcu-
lations. Kell€o and Sadlej developed basis sets including the
polarization functions for the relativistic calculations of atomic
and molecular electric properties in the DK2 approximation.
Their basis sets are devised for atoms of groups Ib and IIb150 and
groups Ia and IIa151 of the periodic table. The excellent perfor-
mance of their basis sets has been shown in the case of the
calculations for atomic and molecular electric properties such as
polarizabilities and dipole moments. de Jong et al. proposed the
generation of DK2 correlation consistent basis sets, cc-pVXZ
(X = D, T, Q, and 5) for H, He, B�Ne, Al�Ar, and Ga�Br.147

Roos et al. have also developed relativistic basis sets contracted
by the use of the atomic natural orbital (ANO) with the DK2
method for the main group and rare gas atoms,152 alkaline and
alkaline-earth atoms,153 actinide atoms Ac�Cm,154 and lantha-
nide atoms La�Lu.155 The basis sets developed by de Jong et al.
and Roos et al. can be retrieved from the EMSL Gaussian Basis
Set Library.156 Haiduke et al.157 proposed the DK2 version of the
relativistic-adapted Gaussian basis sets (RAGBSs), which were
contracted with the general contraction scheme at the HF level.
In their RAGBSs, Gaussian exponents were generated by using a
technique with a polynomial version of the Generator Coordi-
nate. Polarization functions were determined by optimizing with
the CI method including single and double excitations. While
these four families are generally contracted basis sets, Pantazis
et al. constructed the segmented-contracted DK2 basis sets for
the elements La�Lu158 and Hf�Hg.159 Jorge and co-workers
also proposed segmented-contracted basis sets with the in-
clusion of the scalar DK2 effect at the DZP, TZP, and QDP

levels for the elements H�Kr160 and Rb�Xe.161 Significant
computational advantages can be realized owing to the loose
contraction of their basis sets compared with the generally
contracted basis sets. The basis sets of the Jorge group are
provided on their Web site,162 while the DK2 basis sets
(Hf�Hg) of Pantazis et al. are available at the EMSL Gaussian
Basis Set Library.

As well as the contraction coefficients, the exponents of GTOs
can be optimized with the inclusion of the DK Hamiltonian. The
first attempt, by Chandra and Hess, was for basis sets with point-
nucleus and finite-nucleusmodels for the gold atom.163 Nakajima
and co-workers proposed the relativistic GTO basis sets covering
the elementsH�Lr (atomic numbersZ = 1�103) using the DK3
method with point-charge164 and finite-nucleus165 models. The
exponents and contraction coefficients in their DK3 basis sets are
determined by atomic HF calculations. Peterson and co-workers
systematically developed the correlation-consistent family of basis sets
including the scalar DK2 effect, cc-pwCVXZ (X = T, Q, and 5) for
main group elements (Ga�Kr),166 cc-pVXZ (X = T, Q, and 5)
for 3d transition metals (Sc�Zn),167 and cc-pVTZ for groups 11
(Cu, Ag, and Au) and 12 (Zn, Cd, and Hg)168 and 4d (Y�Pd)169

and 5d (Hf�Pt) transition metals.170 Their basis sets are
available on the Web site of the Peterson group,171 as well as
the EMSL Gaussian Basis Set Library. Noro and co-workers also
developed the natural-orbital-based relativistic correlating basis
sets. The spin-free relativistic effects are considered through the
DK3 approximation with the finite nucleus model. A segmented
contraction scheme is adopted so that their basis sets attain both
efficiency and compactness while maintaining a high-quality
method of describing correlation energies in various atoms and
molecules. Their DK3 basis sets cover the elements H to
Lr.172�177 Their basis sets are provided at the Web site of their
basis set library.178

3.4. Model Potentials
The effective core potential (ECP) approach is one of the

most successful techniques for the calculation of computationally
demanding molecular systems. It greatly reduces the computa-
tional effort for systems with a large number of electrons by
replacing the chemically inert core electrons with a potential
acting on the valence electrons. In addition, the ECPs can be
derived to include a relativistic treatment. Two families are
recognized from the base ECP method. The first family is called
the pseudopotential, which originates from the Phillips�
Kleinman equation179 and results in the use of nodeless valence
pseudo-orbitals. The second family is the model potential, which
originates from the Huzinaga�Cantu equation180 in which the
valence orbitals retain exact nodal properties.

In the ECP approximation with the DKHamiltonian, the core
electrons can be modeled by the potential determined by the
atomic DK calculation, and the relativistic effects on the valence
orbitals are directly taken into account by the valence DK
Hamiltonian with the predetermined potential. Ab initio core
model potentials (AIMPs) based on the DK2 and DK3 methods
have been proposed for the third row transition metal elements
from La to Pt,181 the transition metal elements from Sc to
Hg,182,183 the lanthanide series fromCe to Lu,184 and the actinide
elements from Th to Lr.185 The AIMP of a nucleus is represented
by186,187

VAIMPðiÞ ¼ VMP
CoulðiÞ þ VMP

exchðiÞ þ PðiÞ ð94Þ
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The VCoul operator represents the Coulomb interactions of one
valence electron with the Zcore electrons and the same number of
protons located at the nucleus. It is convenient to fit VCoul with a
linear combination of Gaussian functions as follows:

VCoulðiÞ ¼ � Zcore

ri
þ 2 ∑

core

c
JcðiÞ = VMP

CoulðiÞ

¼ ∑
k
Ck

expð�Rkri2Þ
ri

ð95Þ

Similarly, the Vexch operator represents the exchange interaction
between one valence electron and the core electrons. Its spectral
representation operator replaces this operator as

VexchðiÞ ¼ � ∑
core

c
KcðiÞ = VMP

exchðiÞ

¼ ∑
l
∑
l

m ¼ � l
∑
a, b

ja; lmæAl;abÆb; lmj ð96Þ

where a and b are arbitrary Gaussian functions and Al,ab is an
element in the following matrix:

A ¼ S�1KS�1 where Kij ¼ ÆijVexchjjæ and Sij ¼ Æijjæ ð97Þ

By use of these operators, all of the one-electron exchange
integrals become those of the all-electron calculation if Æi| and |jæ
belong to the {a;lm} and {b;lm} basis functions. The operator
P(i) is obtained by the core�valence orthogonality and
consists of the core orbitals, φc, and the core orbital energies,
εc. The nodal structures of the valence orbitals are ensured
through the operator

PðiÞ ¼ � ∑
core

c
2εcjφcæÆφcj ð98Þ

The direct relativistic effects on the valence electrons are
explicitly taken into account by using one-component relati-
vistic kinetic energy and DK-transformed nuclear attraction
interaction operators. The corresponding valence basis sets
were optimized by the minimization of the valence SCF total
energies. Several applications of DK-AIMPs to atomic and
molecular systems in ground and excited states show that the
DK-AIMP results satisfactorily reproduce the all-electron
DK results.188�190 The model core potential (MCP)
approach,191,192 which is another family of model potential
methods, has also been extended to the relativistic case with
the DK Hamiltonian. The MCP is generally written as

VMCPðiÞ ¼ � Z� Zcore

ri
∑
k
Ckr

nk
i expð�Rkri

2Þ þ PðiÞ ð99Þ

Recently, Zeng et al.193�195 developed MCPs with the scalar-
relativistic effect at the DK3 level combined with the DK1
Hamiltonian for spin�orbit couplings and their basis sets. The
comparison between the DK-MCP and all-electron DK cal-
culations of atomic and ionic term and level energies and
spectroscopic constants indicate the chemical accuracy of new
DK-MCPs in reproducing all-electron properties. A timing study
using DK-MCPs demonstrates the computational savings.

3.5. Program Packages
The DKmethod is currently implemented in several quantum

chemical program packages. The DK2 method can be used in
official Gaussian,196 Dalton,197 and ParaGauss198 programs. The
NWChem199 and GAMESS200 programs are able to treat the
DK3method, as well as theDK2method. The arbitrary-orderDK
method is also available in the MOLCAS201 and MOLPRO202

programs, and first- to fifth-order DKmethods can be used in the
TURBOMOLE,203 ORCA,204 and CP2k205 programs by the use
of the DK module developed by the Reiher group. Most of these
program packages currently treat the scalar DKHamiltonian with
the nonrelativistic two-electron term in the SCF calculation or the
sequential electron correlation calculation. The spin�orbit cou-
plings are usually treated in a perturbative fashion (for example,
see ref 206). The spin�orbit eigenstates are obtained by the
diagonalization of the spin�orbit Hamiltonian over a basis con-
sisting of all the spin components of wave functions constructed
using the spin-free eigenstates.

4. MAGNETIC PROPERTIES WITH THE DK METHOD

The DK approach has successfully been applied to relativistic
calculations for a variety of atomic and molecular systems that
contain heavy elements. The applications include calculations of
spectroscopic constants such as molecular geometries, frequen-
cies, dissociation energies, fine structure splittings, excitation
energies, ionization potentials, and electron affinities, as well as
electric properties such as dipole moments, polarizabilities, hyper-
polarizabilities, and nuclear quadrupole coupling tensors. Most of
these calculations are referred to in the excellent recent review of
Ilia�s et al.207 Static dipole polarizabilities for the electronic ground
states of the neutral elements, which are calculated by several
relativistic approaches including the DK method, are compiled by
Schwerdtfeger.208 To avoid overlapwith these accounts asmuch as
possible, in this review we will focus on the magnetic properties
calculated by the DK method. Since most of the magnetic
properties such as nuclear magnetic shielding and spin�spin
coupling constants are the properties that are mainly derived from
the electrons in the region close to the nuclei, changes in the
electronic structure due to relativistic effects are important for
magnetic properties. In addition, the so-called “picture-change”
effect is important for the calculation of second-order magnetic
properties such as magnetic shielding constants because of a huge
contribution of the negative-energy states. The picture-change
effect is derived from the change in representation from the Dirac
picture to the Schr€odinger�Pauli picture. In a quasi-relativistic
theory, the four-component wave function is transformed into the
two-component form so that a perturbation operator should be
transformed into the same representation as thewave function.We
will point out the importance of the picture-change effect for
individual magnetic properties in the following subsections.

4.1. NMR Magnetic Shielding Constants
The first application of the DK approach to the calculation for

the NMR magnetic shielding constants was proposed by Ballard
et al.209�211 They used the two-component unrestricted HF
(generalized UHF, GUHF) method with the DK2 Hamiltonian.
Only the spin-free part of the DK2 Hamiltonian was considered,
and the spin�orbit term and the magnetic interaction term
remained in the Breit�Pauli form. Fukui and Baba212 also applied
the DK2 method to the calculation of NMR chemical shifts with
fixed gauge origins at the HF level. In their calculation, the
relativistic corrections to the spin�orbit part of the zeroth-order
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Hamiltonian and the spin-free term were considered. They
pointed out that the relativistic DK transformation including the
magnetic vector potential is important, and they still used the
magnetic interaction term in the Breit�Pauli form in their
practical calculations. Baba and Fukui213 proposed a gauge-origin
independent expression for the nuclearmagnetic shielding derived
from the DK2 transformation with the gauge-including atomic
orbital (GIAO) approach. However, since their implementation
ignored the spin�orbit contribution, the computed values were
too small to interpret the very large upshield proton shifts
observed in HBr and HI molecules. Later, to reproduce the full
relativistic effect, Baba and Fukui214 introduced the mass-velocity
effect on the magnetic perturbation Hamiltonians in their GIAO
treatment. They found that the inclusion of the mass�
velocity effects into all of the perturbation Hamiltonians greatly
improves the results. Fukuda et al. proposed the DK2-transformed
Hamiltonian including the relativisticmagnetic vector potential.215

They applied it to the calculation of the magnetic shielding
constants with the GIAO approach at generalized UHF (QR-
GUHF)216 and generalized unrestricted second-order Møller�
Plesset (QR-GUMP2)217 levels. Figure 2 displays the correlation
among the QR-GUMP2, QR-GUHF, and experimental 125Te
NMR chemical shifts in several Te compounds. TheDK2-GUMP2
method quantitatively reproduces the experimental findings. In
contrast, the QR-GUHF method can qualitatively explain the
experimental trends, while the electron-correlation contribution
improves the quantitative agreement with experiment findings. A
series of the calculations of the Nakatsuji group215�219 show that
the picture-change effect on the magnetic interaction terms is
significant for the magnetic shielding constant of heavy elements.
For example, Table 4 shows the shielding constant values for
hydrogen halides computed by three approximations for the
picture-change effect on the magnetic terms: QR-0, which is the
DK2 calculation with nonrelativistic magnetic interaction; QR-1,
which is the DK2 calculation with the first-order DK magnetic
interaction and the nonrelativistic diamagnetic shielding term; and
QR-2, which is the full DK2 calculation with the second-order DK
magnetic interaction. The relativistic correction of the magnetic
interaction almost does not affect the shielding constants of
hydrogen. On the other hand, for the halogen magnetic shielding
constants, the relativistic correction of the magnetic interaction is
important. The relativistic effect on the magnetic interaction and
the picture-change effect are the dominant sources of the heavy atom

shifts of the magnetic shielding constants of the heavy halogens.
Recently, for the nuclear magnetic shielding of HX (X = F, Cl, Br,
and I),H2X (X=O, S, Se, andTe), and noble gas X (X=He,Ne, Ar,
Kr, and Xe) systems, Kudo and Fukui220 compared the DK2 results
with those of the infinite-order BSS. The results show that the
relativistic corrections of higher than second order are negligibly
small, except for the paramagnetic parts of I, Te, and Xe shieldings.

4.2. NMR Spin�Spin Couplings
Melo et al.221 applied the DK approximation to the calculation

of NMR spin�spin couplings. The first- and second-order DK-
transformed Hamiltonians of the magnetic interaction terms
were derived following Fukuda et al., while, in the practical
calculation, the diamagnetic contribution is kept in the Breit�
Pauli form. As shown in Table 5, the numerical results calculated
at the HF level for one-bond spin�spin couplings for a series of
tetrahydrides (CH4, SiH4, GeH4, and SnH4) show that the first-
order DK gives relativistic corrections that are too large even for
tetrahydrides containing the lighter elements while the second-
order DK considerably improves the agreement with relativistic
corrections given by four-component DHF calculations. The SO
effect seems to be negligible for the one-bond couplings of this
series of tetrahydrides.

4.3. Magnetizabilities
The calculations of the magnetizabilities of noble gas atoms

(He, Ne, Ar, Kr, and Xe) were carried out at the HF level with the
DK2 Hamiltonian including the picture-change effect on the
magnetic term.222 The calculated and experimental magnetiz-
abilities of He, Ne, Ar, Kr, and Xe are shown in Table 6. It was
found that the picture-change effect gives a correction in the
magnetizabilities of Kr and Xe. The picture-change effect on the
magnetizabilities is larger than any other relativistic effects such
as the SO interaction. The approach has been extended to the
MP2 case.223 These results demonstrate that the total relativistic

Table 4. Proton and Halogen Magnetic Shielding Constants
(in ppm) of Hydrogen Halides

nuca NR QR-0 OQ-1 QR-2 4-comp

HF H 28.09 28.61 28.23 28.34 27.87

HCl H 30.54 31.64 31.56 31.56 31.00

HBr H 30.74 37.17 37.13 37.15 36.08

HI H 31.15 49.57 49.49 49.72 47.98

HF F 416.8 415.9 430.6 423.4 423.3

HCl Cl 957.5 968.8 1035.0 1018.9 1020.1

HBr Br 2634.9 2754.9 3280.3 3164.9 3224.6

HI I 4540.4 5393.6 6902.6 6508.5 6768.4
aResonance nucleus.

Table 5. Calculated One-Bond 1J(X,H) Spin�Spin
Couplings (in Hz) for the Series of Tetrahydrides Using
the Hartree�Fock Approximation

CH4 SiH4 GeH4 SnH4

nonrel. 158.4 �243.5 �108.2 �1930.6

DK1-sf 150.6 �229.1 �110.3 �2371.0

DK1-SO 150.6 �229.1 �109.9 �2392.3

DK2-sf 157.1 �245.9 �122.5 �2616.0

DK2-SO 157.1 �245.9 �121.9 �2629.3

Figure 2. Correlation between theoretical and experimental 125Te
NMR chemical shifts.Reprinted with permission from ref 217. Copy-
right 2005 American Institute of Physics.
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effects for singlet hydrides are small, whereas the total relativistic
effect for IF is as high as 22% because of the coupling between
the high electronegativity of F and the SO interaction. Conse-
quently, relativistic contributions to magnetizabilities should not
be neglected. The relativistic�correlation interferences for the
magnetizabilities were insignificant for the investigated molecules
other than SbH. The calculation of the frequency-dependent
magnetizabilities at the HF level with the DK2 Hamiltonian has
also been reported,224 although the dependence of the origin of
the coordinate axes, as well as that of the gauge-origin, are ignored
in the calculations. The frequency-dependent calculations of
H2X (X = O, S, Se, and Te), noble gases (He, Ne, Ar, Kr, and
Xe), and small open-shell molecules (CH2, CH3, and O2) show
that scalar relativistic and spin�orbit interactions affect mainly
the diamagnetic magnetizabilities and paramagnetic magnetizabi-
lities, respectively.

4.4. Zero-Field Splittings
Zero-field splitting (ZFS) originates from two interactions,

that is, the spin�orbit interaction and the direct dipolar spin�
spin interaction. While the direct dipolar spin�spin coupling
dominates the ZFS parameters for organic radicals, the
spin�orbit interaction generally dominates the ZFS parameters
for transition metal complexes. Reviakine et al. applied the two-
component DK approach including the spin�orbit term to the
density-functional calculation of the spin�orbit contributions to
the ZFS parameters of high-spin molecular systems225 The ZFS

parameters are computed directly from energy differences
between different relativistic states. They found that their
approach systematically underestimates the zero-field split-
ting,D, by a factor of 2 probably because of the use of a single-
determinant wave function.

By using the variational approach of Reviakine et al. in addition
to the second-order perturbation approach, van W€ullen137

estimated the magnetic anisotropy energy, which is closely
related to ZFS. The DK Hamiltonian, ZORA, and ECP are
adopted in his calculations. The magnetic anisotropy of theMn12
molecule is reproduced reasonably by all-electronDK and ZORA
calculations. He proposed that the magnetic anisotropy energy
should be divided by S(S � 1/2) (with spin S) instead of the
conventional factor, S2, to extract the ZFS parameter,D, from the
(axial) magnetic anisotropy energy. The factor S(S � 1/2) is
derived from the quantum mechanical treatment of spin rather
than the classical treatment. It is expected that his approach
will automatically correct the underestimated ZFS results of
Reviakine et al.

4.5. EPR g-Tensors
Neyman et al.226 and Malkin et al.227 developed a two-

component density functional approach with the two-
component DK2 approach including the spin�orbit effect to
calculate EPR g-tensor values. Since their approaches employ
two-component eigenfunctions when spin�orbit effects are taken
into account self-consistently, the g-tensor can be treated as a
first-order property with respect to the external magnetic field.
To consider the picture-change effect of the DK transfor-
mation properly, both groups use the first-order DK-transformed
Zeeman operators. Following the work of Lenthe et al. based
on the ZORA Hamiltonian,228 Neyman et al. adopted spin-
restricted two-component density functional treatments for
the calculation of the electronic g-tensors. In the spin-
restricted case, the expression for the g-tensor can simply be
given by using Kramers doublet functions. Majumder et al.136

investigated the effect of the first- and second-order SNSO
approximations on the g-tensor values by using the approach
of Neyman et al. They found that the first- and second-order
results agree in the number of digits, so the first-order SNSO
method is attractive for determining approximate molecular
g-shifts using the first-order perturbation approach. Malkin
et al. applied the spin-polarized noncollinear DFT method to
the calculation of electronic g-tensors. In their approach, the
diagonal elements of the g-matrix are obtained by three self-
consistent-field calculations with orthogonal orientation of
the total magnetization. By comparing the spin-restricted
result of Neyman et al. with their spin-polarized results, they
showed that the spin polarization effect is important for the
evaluation of g-tensor values, as shown in Table 7. The
approach of Malkin et al. was recently applied to electronic
g-tensor calculations for transition metal complexes such as
molybdenum and tungsten enzyme-active sites.229 Their results
indicate the substantial importance of the spin-polarized two-
component treatment that includes higher-order spin�orbit
effects.

4.6. Hyperfine Coupling Tensors
The scalar relativistic DK2 method with picture-change trans-

formation of the hyperfine operators was applied to the calculation
of hyperfine coupling tensors with point-charge230 and finite-
nucleus231 approximations. While neglect of the transformation of
the operators leads to meaningless hyperfine results, DFT

Table 6. Calculated and Experimental Magnetizabilities (in
units of 10�30 J T�2) of He, Ne, Ar, Kr, and Xe

atom methoda dia-ξzz para-ξzz total iso-ξzz PC effect

He NR �31.2 0.000 �31.2

sf DK2(V) �31.2 0.000 �31.2

DK2(V) �31.2 0.000 �31.2

DK2(V þ A) �31.0 0.000 �31.0 0.2

exptl �33.5

Ne NR �123.3 0.000 �123.3

sf DK2(V) �123.2 0.000 �123.2

DK2(V) �123.2 0.000 �123.2

DK2(V þ A) �120.3 0.000 �120.3 2.9

exptl �116

Ar NR �342.4 0.000 �342.4

sf DK2(V) �341.6 0.000 �341.6

DK2(V) �341.6 0.004 �341.6

DK2(V þ A) �331.0 0.004 �331.0 10.6

exptl �321

Kr NR �519.9 0.000 �519.9

sf DK2(V) �514.3 0.000 �514.3

DK2(V) �514.4 0.062 �514.3

DK2(V þ A) �470.1 0.137 �470.0 44.3

exptl �482

Xe NR �823.9 0.000 �823.9

sf DK2(V) �804.6 0.000 �804.6

DK2(V) �804.9 0.370 �804.5

DK2(V þ A) �719.5 0.531 �719.0 85.5

exptl �756
aNR, nonrelativistic; sf DK2(V), spin-free DK2; DK2(V), full DK2
calculation without the PC effect on the magnetic term; DK2(V þ A),
full DK2 calculation with the PC effect on the magnetic term.
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calculations with operators transformed to the first order agree
relatively well with previous ZORA results.232 While nonrelativis-
tic calculations increasingly underestimate the isotropic hyperfine
couplings with increasing nuclear charge, scalar relativistic calcula-
tions with point nucleus provide somewhat overestimated values.
The effect of the finite nuclear size is small for lighter atoms like Cu
but reduces the computed values by up to 20% for heavy elements
like Au or Hg. Its effect improves the agreement with experimental
findings.

4.7. Magnetic Circular Dichroisms
The two-component DK2 formulation of magnetic circular

dichroism (MCD) has been proposed using the finite perturba-
tion method and the sum-over-state perturbation method at the
HF level.233,234 Relativistic effects are shown to be important for
the MCD spectra of molecules that contain heavy elements. The
relativistic effects on the Faraday term are mainly due to the one-
electron spin�orbit term rather than the spin-free relativistic and
the two-electron spin�orbit terms.

5. CONCLUSIONS AND PERSPECTIVES

The scalar variant of the DK method has successfully been
applied to a variety of systems that contain elements across the
periodic table. Among many relativistic approximations to the
four-component approach with the DC(B) Hamiltonian, cur-
rently it is the most widely used relativistic all-electron approx-
imation. This is partly because the DK approach has continuously
been developed and has been implemented in various publicly
available program packages. One of the goals of the next-genera-
tion molecular theory is to offer a computational approach for the
electronic structure that is applicable to molecular systems that
contain a wide variety of atoms in the periodic table with the same
quality and accuracy. The approximate variant of the two-compo-
nent relativistic molecular theory with the DK approach can
become a foundation for the next-generation molecular theory.
To this end, we need further improvements to the theoretical work
on the DKmethod. In addition, we need to develop a widely used
program suite based on the two-component spin�orbit SCF
approach and its electron-correlation approach with the DK

method. The current establishment of quantum chemistry largely
depends on the development of the (one-component) program
packages that are widely available and user-friendly. When two-
component versions of program packages are established and
widely used in place of the current scalar programs, we will switch
to the next stage of theoretical chemistry.
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